Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 9(1): 47, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409199

RESUMO

Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Genoma Humano/genética , DNA
2.
Dev Cell ; 58(10): 898-914.e7, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37071996

RESUMO

Cardiomyocyte differentiation continues throughout murine gestation and into the postnatal period, driven by temporally regulated expression changes in the transcriptome. The mechanisms that regulate these developmental changes remain incompletely defined. Here, we used cardiomyocyte-specific ChIP-seq of the activate enhancer marker P300 to identify 54,920 cardiomyocyte enhancers at seven stages of murine heart development. These data were matched to cardiomyocyte gene expression profiles at the same stages and to Hi-C and H3K27ac HiChIP chromatin conformation data at fetal, neonatal, and adult stages. Regions with dynamic P300 occupancy exhibited developmentally regulated enhancer activity, as measured by massively parallel reporter assays in cardiomyocytes in vivo, and identified key transcription factor-binding motifs. These dynamic enhancers interacted with temporal changes of the 3D genome architecture to specify developmentally regulated cardiomyocyte gene expressions. Our work provides a 3D genome-mediated enhancer activity landscape of murine cardiomyocyte development.


Assuntos
Elementos Facilitadores Genéticos , Miócitos Cardíacos , Animais , Camundongos , Cromatina , Regiões Promotoras Genéticas , Transcriptoma
3.
J Cardiovasc Dev Dis ; 10(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37103023

RESUMO

The rapid improvement of descriptive genomic technologies has fueled a dramatic increase in hypothesized connections between cardiovascular gene expression and phenotypes. However, in vivo testing of these hypotheses has predominantly been relegated to slow, expensive, and linear generation of genetically modified mice. In the study of genomic cis-regulatory elements, generation of mice featuring transgenic reporters or cis-regulatory element knockout remains the standard approach. While the data obtained is of high quality, the approach is insufficient to keep pace with candidate identification and therefore results in biases introduced during the selection of candidates for validation. However, recent advances across a range of disciplines are converging to enable functional genomic assays that can be conducted in a high-throughput manner. Here, we review one such method, massively parallel reporter assays (MPRAs), in which the activities of thousands of candidate genomic regulatory elements are simultaneously assessed via the next-generation sequencing of a barcoded reporter transcript. We discuss best practices for MPRA design and use, with a focus on practical considerations, and review how this emerging technology has been successfully deployed in vivo. Finally, we discuss how MPRAs are likely to evolve and be used in future cardiovascular research.

4.
Circulation ; 147(11): 881-896, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36705030

RESUMO

BACKGROUND: Cardiac chamber-selective transcriptional programs underpin the structural and functional differences between atrial and ventricular cardiomyocytes (aCMs and vCMs). The mechanisms responsible for these chamber-selective transcriptional programs remain largely undefined. METHODS: We nominated candidate chamber-selective enhancers (CSEs) by determining the genome-wide occupancy of 7 key cardiac transcription factors (GATA4, MEF2A, MEF2C, NKX2-5, SRF, TBX5, TEAD1) and transcriptional coactivator P300 in atria and ventricles. Candidate enhancers were tested using an adeno-associated virus-mediated massively parallel reporter assay. Chromatin features of CSEs were evaluated by performing assay of transposase accessible chromatin sequencing and acetylation of histone H3 at lysine 27-HiChIP on aCMs and vCMs. CSE sequence requirements were determined by systematic tiling mutagenesis of 29 CSEs at 5 bp resolution. Estrogen-related receptor (ERR) function in cardiomyocytes was evaluated by Cre-loxP-mediated inactivation of ERRα and ERRγ in cardiomyocytes. RESULTS: We identified 134 066 and 97 506 regions reproducibly occupied by at least 1 transcription factor or P300, in atria or ventricles, respectively. Enhancer activities of 2639 regions bound by transcription factors or P300 were tested in aCMs and vCMs by adeno-associated virus-mediated massively parallel reporter assay. This identified 1092 active enhancers in aCMs or vCMs. Several overlapped loci associated with cardiovascular disease through genome-wide association studies, and 229 exhibited chamber-selective activity in aCMs or vCMs. Many CSEs exhibited differential chromatin accessibility between aCMs and vCMs, and CSEs were enriched for aCM- or vCM-selective acetylation of histone H3 at lysine 27-anchored loops. Tiling mutagenesis of 29 CSEs identified the binding motif of ERRα/γ as important for ventricular enhancer activity. The requirement of ERRα/γ to activate ventricular CSEs and promote vCM identity was confirmed by loss of the vCM gene profile in ERRα/γ knockout vCMs. CONCLUSIONS: We identified 229 CSEs that could be useful research tools or direct therapeutic gene expression. We showed that chamber-selective multi-transcription factor, P300 occupancy, open chromatin, and chromatin looping are predictive features of CSEs. We found that ERRα/γ are essential for maintenance of ventricular identity. Finally, our gene expression, epigenetic, 3-dimensional genome, and enhancer activity atlas provide key resources for future studies of chamber-selective gene regulation.


Assuntos
Histonas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Histonas/genética , Histonas/metabolismo , Estudo de Associação Genômica Ampla , Lisina/genética , Lisina/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Estrogênios
7.
Nat Commun ; 12(1): 4442, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290256

RESUMO

The forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.


Assuntos
Epigênese Genética , Miócitos Cardíacos/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Recém-Nascidos , Sistemas CRISPR-Cas , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Camundongos , Mutagênese , Miócitos Cardíacos/metabolismo , Fenótipo , Reprodutibilidade dos Testes , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
8.
Nat Commun ; 10(1): 4907, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659164

RESUMO

Mapping the chromatin occupancy of transcription factors (TFs) is a key step in deciphering developmental transcriptional programs. Here we use biotinylated knockin alleles of seven key cardiac TFs (GATA4, NKX2-5, MEF2A, MEF2C, SRF, TBX5, TEAD1) to sensitively and reproducibly map their genome-wide occupancy in the fetal and adult mouse heart. These maps show that TF occupancy is dynamic between developmental stages and that multiple TFs often collaboratively occupy the same chromatin region through indirect cooperativity. Multi-TF regions exhibit features of functional regulatory elements, including evolutionary conservation, chromatin accessibility, and activity in transcriptional enhancer assays. H3K27ac, a feature of many enhancers, incompletely overlaps multi-TF regions, and multi-TF regions lacking H3K27ac retain conservation and enhancer activity. TEAD1 is a core component of the cardiac transcriptional network, co-occupying cardiac regulatory regions and controlling cardiomyocyte-specific gene functions. Our study provides a resource for deciphering the cardiac transcriptional regulatory network and gaining insights into the molecular mechanisms governing heart development.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/genética , Imunoprecipitação da Cromatina , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Redes Reguladoras de Genes , Coração/crescimento & desenvolvimento , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Fatores de Transcrição/genética
9.
Nat Commun ; 9(1): 3837, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242271

RESUMO

After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump blood throughout an animal's lifespan. How this maturation process is regulated and coordinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion, mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Maintenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is associated with developmentally regulated SRF chromatin occupancy and transcriptional regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these data indicate that carefully balanced SRF activity is essential to promote CM maturation through a hierarchy of cellular processes orchestrated by sarcomere assembly.


Assuntos
Miócitos Cardíacos/fisiologia , Fator de Resposta Sérica/metabolismo , Animais , Animais Recém-Nascidos , Sistemas CRISPR-Cas , Cromatina/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Mutagênese , Transcriptoma
10.
Curr Protoc Mol Biol ; 120: 31.11.1-31.11.14, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28967995

RESUMO

In vivo loss-of-function studies are currently limited by the need for appropriate conditional knockout alleles. CRISPR/Cas9 is a powerful tool commonly used to induce loss-of-function mutations in vitro. However, CRISPR components have been difficult to deploy in vivo. To address this problem, we developed the CASAAV (CRISPR/Cas9/AAV-based somatic mutagenesis) platform, in which recombinant adeno-associated virus (AAV) is used to deliver tandem guide RNAs and Cre recombinase to Cre-dependent Cas9-P2A-GFP mice. Because Cre is under the control of a tissue-specific promoter, this system allows temporally controlled, cell type-selective knockout of virtually any gene to be obtained within a month using only one mouse line. Here, we focus on gene disruption in cardiomyocytes, but the system could easily be adapted to inactivate genes in other cell types transduced by AAV. © 2017 by John Wiley & Sons, Inc.


Assuntos
Sistemas CRISPR-Cas , Dependovirus/genética , Edição de Genes , Vetores Genéticos/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Endonucleases/genética , Endonucleases/metabolismo , Expressão Gênica , Ordem dos Genes , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Genes Reporter , Engenharia Genética , Humanos , Miócitos Cardíacos/metabolismo
11.
Circ Res ; 120(6): 941-959, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28302741

RESUMO

Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.


Assuntos
Cardiopatias/terapia , Coração/embriologia , Regeneração , Medicina Regenerativa/métodos , Animais , Coração/fisiologia , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Transdução de Sinais
12.
Circ Res ; 120(12): 1874-1888, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28356340

RESUMO

RATIONALE: Loss-of-function studies in cardiac myocytes (CMs) are currently limited by the need for appropriate conditional knockout alleles. The factors that regulate CM maturation are poorly understood. Previous studies on CM maturation have been confounded by heart dysfunction caused by whole organ gene inactivation. OBJECTIVE: To develop a new technical platform to rapidly characterize cell-autonomous gene function in postnatal murine CMs and apply it to identify genes that regulate transverse tubules (T-tubules), a hallmark of mature CMs. METHODS AND RESULTS: We developed CRISPR/Cas9/AAV9-based somatic mutagenesis, a platform in which AAV9 delivers tandem guide RNAs targeting a gene of interest and cardiac troponin-T promoter-driven Cre to RosaCas9GFP/Cas9GFP neonatal mice. When directed against junctophilin-2 (Jph2), a gene previously implicated in T-tubule maturation, we achieved efficient, rapid, and CM-specific JPH2 depletion. High-dose AAV9 ablated JPH2 in 64% CMs and caused lethal heart failure, whereas low-dose AAV9 ablated JPH2 in 22% CMs and preserved normal heart function. In the context of preserved heart function, CMs lacking JPH2 developed T-tubules that were nearly morphologically normal, indicating that JPH2 does not have a major, cell-autonomous role in T-tubule maturation. However, in hearts with severe dysfunction, both adeno-associated virus-transduced and nontransduced CMs exhibited T-tubule disruption, which was more severe in the transduced subset. These data indicate that cardiac dysfunction disrupts T-tubule structure and that JPH2 protects T-tubules in this context. We then used CRISPR/Cas9/AAV9-based somatic mutagenesis to screen 8 additional genes for required, cell-autonomous roles in T-tubule formation. We identified RYR2 (Ryanodine Receptor-2) as a novel, cell-autonomously required T-tubule maturation factor. CONCLUSIONS: CRISPR/Cas9/AAV9-based somatic mutagenesis is a powerful tool to study cell-autonomous gene functions. Genetic mosaics are invaluable to accurately define cell-autonomous gene function. JPH2 has a minor role in normal T-tubule maturation but is required to stabilize T-tubules in the failing heart. RYR2 is a novel T-tubule maturation factor.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Processos de Crescimento Celular/fisiologia , Dependovirus/genética , Edição de Genes/métodos , Miócitos Cardíacos/fisiologia , Animais , Células Cultivadas , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas Musculares/deficiência , Proteínas Musculares/genética
13.
Dev Cell ; 39(4): 466-479, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27720608

RESUMO

Binding of the transcriptional co-activator YAP with the transcription factor TEAD stimulates growth of the heart and other organs. YAP overexpression potently stimulates fetal cardiomyocyte (CM) proliferation, but YAP's mitogenic potency declines postnatally. While investigating factors that limit YAP's postnatal mitogenic activity, we found that the CM-enriched TEAD1 binding protein VGLL4 inhibits CM proliferation by inhibiting TEAD1-YAP interaction and by targeting TEAD1 for degradation. Importantly, VGLL4 acetylation at lysine 225 negatively regulated its binding to TEAD1. This developmentally regulated acetylation event critically governs postnatal heart growth, since overexpression of an acetylation-refractory VGLL4 mutant enhanced TEAD1 degradation, limited neonatal CM proliferation, and caused CM necrosis. Our study defines an acetylation-mediated, VGLL4-dependent switch that regulates TEAD stability and YAP-TEAD activity. These insights may improve targeted modulation of TEAD-YAP activity in applications from cardiac regeneration to cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Coração/crescimento & desenvolvimento , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Acetilação , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Via de Sinalização Hippo , Humanos , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Ratos Wistar , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/química , Proteínas de Sinalização YAP
14.
Dev Biol ; 413(2): 153-159, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26988120

RESUMO

A subset of macrophages that reside in adult tissues originate from the fetal yolk sac, while others derive from circulating monocytes. These ontologically different macrophage subsets have distinct roles in tissue injury responses, with the embryonic population overall having beneficial activity in cardiac repair. Here we show that fetal yolk macrophages are recruited to a niche within and just below the epicardium, the mesothelial covering of the heart. The epicardium was required for establishment of yolk sac macrophages in this region of the fetal heart, and this function of epicardium depended on its expression of the transcription factor WT1. Thus, tissue-specific cues and transcriptional programs recruit or retain embryonic macrophages in their final abodes, where they help to shape organ homeostasis and injury responses.


Assuntos
Macrófagos/citologia , Miocárdio/citologia , Pericárdio/citologia , Saco Vitelino/citologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Diferenciação Celular , Linhagem da Célula , Epitélio , Glicoproteínas/metabolismo , Coração/embriologia , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Comunicação Parácrina
15.
PLoS One ; 10(5): e0128105, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023924

RESUMO

GATA4 and GATA6 are central cardiac transcriptional regulators. The postnatal, stage-specific function of the cardiac transcription factors GATA4 and GATA6 have not been evaluated. In part, this is because current Cre-loxP approaches to cardiac gene inactivation require time consuming and costly breeding of Cre-expressing and "floxed" mouse lines, often with limited control of the extent or timing of gene inactivation. We investigated the stage-specific functions of GATA4 and GATA6 in the postnatal heart by using adeno-associated virus serotype 9 to control the timing and extent of gene inactivation by Cre. Systemic delivery of recombinant, adeno-associated virus 9 (AAV9) expressing Cre from the cardiac specific Tnnt2 promoter was well tolerated and selectively and efficiently recombined floxed target genes in cardiomyocytes. AAV9:Tnnt2-Cre efficiently inactivated Gata4 and Gata6. Neonatal Gata4/6 inactivation caused severe, rapidly lethal systolic heart failure. In contrast, Gata4/6 inactivation in adult heart caused only mild systolic dysfunction but severe diastolic dysfunction. Reducing the dose of AAV9:Tnnt2-Cre generated mosaics in which scattered cardiomyocytes lacked Gata4/6. This mosaic knockout revealed that Gata4/6 are required cell autonomously for physiological cardiomyocyte growth. Our results define novel roles of GATA4 and GATA6 in the neonatal and adult heart. Furthermore, our data demonstrate that evaluation of gene function hinges on controlling the timing and extent of gene inactivation. AAV9:Tnnt2-Cre is a powerful tool for controlling these parameters.


Assuntos
Dependovirus/genética , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Coração/crescimento & desenvolvimento , Integrases/genética , Miócitos Cardíacos/fisiologia , Animais , Animais Recém-Nascidos , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Vetores Genéticos , Coração/fisiologia , Insuficiência Cardíaca Sistólica/genética , Integrases/administração & dosagem , Camundongos Transgênicos
16.
Cell Rep ; 9(6): 2071-83, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25497097

RESUMO

The basic-helix-loop-helix (bHLH) transcription factor Hand2 plays critical roles during cardiac morphogenesis via expression and function within myocardial, neural crest, and epicardial cell populations. Here, we show that Hand2 plays two essential Notch-dependent roles within the endocardium. Endocardial ablation of Hand2 results in failure to develop a patent tricuspid valve, intraventricular septum defects, and hypotrabeculated ventricles, which collectively resemble the human congenital defect tricuspid atresia. We show endocardial Hand2 to be an integral downstream component of a Notch endocardium-to-myocardium signaling pathway and a direct transcriptional regulator of Neuregulin1. Additionally, Hand2 participates in endocardium-to-endocardium-based cell signaling, with Hand2 mutant hearts displaying an increased density of coronary lumens. Molecular analyses further reveal dysregulation of several crucial components of Vegf signaling, including VegfA, VegfR2, Nrp1, and VegfR3. Thus, Hand2 functions as a crucial downstream transcriptional effector of endocardial Notch signaling during both cardiogenesis and coronary vasculogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores Notch/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Endocárdio/embriologia , Camundongos , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Receptores Notch/genética , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Dev Biol ; 388(2): 149-58, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24565998

RESUMO

The Periostin Cre (Postn-Cre) lineage includes endocardial and neural crest derived mesenchymal cells of the cardiac cushions, neural crest-derived components of the sympathetic and enteric nervous systems, and cardiac fibroblasts. In this study, we use the Postn-Cre transgenic allele to conditionally ablate Hand2 (H2CKO). We find that Postn-Cre H2CKOs die shortly after birth despite a lack of obvious cardiac structural defects. To ascertain the cause of death, we performed a detailed comparison of the Postn-Cre lineage and Hand2 expression at mid and late stages of embryonic development. Gene expression analyses demonstrate that Postn-Cre ablates Hand2 from the adrenal medulla as well as the sphenopalatine ganglia of the head. In both cases, Hand2 loss-of-function dramatically reduces expression of Dopamine Beta Hydroxylase (Dbh), a gene encoding a crucial catecholaminergic biosynthetic enzyme. Expression of the genes Tyrosine Hydroxylase (Th) and Phenylethanolamine N-methyltransferase (Pnmt), which also encode essential catecholaminergic enzymes, were severely reduced in postnatal adrenal glands. Electrocardiograms demonstrate that 3-day postnatal Postn-Cre H2CKO pups exhibit sinus bradycardia. In conjunction with the aforementioned gene expression analyses, these results strongly suggest that the observed postnatal lethality occurs due to a catecholamine deficiency and subsequent heart failure.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Bradicardia/genética , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Hibridização In Situ , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase
18.
Development ; 140(9): 1946-57, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23571217

RESUMO

Trabeculation and compaction of the embryonic myocardium are morphogenetic events crucial for the formation and function of the ventricular walls. Fkbp1a (FKBP12) is a ubiquitously expressed cis-trans peptidyl-prolyl isomerase. Fkbp1a-deficient mice develop ventricular hypertrabeculation and noncompaction. To determine the physiological function of Fkbp1a in regulating the intercellular and intracellular signaling pathways involved in ventricular trabeculation and compaction, we generated a series of Fkbp1a conditional knockouts. Surprisingly, cardiomyocyte-restricted ablation of Fkbp1a did not give rise to the ventricular developmental defect, whereas endothelial cell-restricted ablation of Fkbp1a recapitulated the ventricular hypertrabeculation and noncompaction observed in Fkbp1a systemically deficient mice, suggesting an important contribution of Fkbp1a within the developing endocardia in regulating the morphogenesis of ventricular trabeculation and compaction. Further analysis demonstrated that Fkbp1a is a novel negative modulator of activated Notch1. Activated Notch1 (N1ICD) was significantly upregulated in Fkbp1a-ablated endothelial cells in vivo and in vitro. Overexpression of Fkbp1a significantly reduced the stability of N1ICD and direct inhibition of Notch signaling significantly reduced hypertrabeculation in Fkbp1a-deficient mice. Our findings suggest that Fkbp1a-mediated regulation of Notch1 plays an important role in intercellular communication between endocardium and myocardium, which is crucial in controlling the formation of the ventricular walls.


Assuntos
Endocárdio/metabolismo , Ventrículos do Coração/patologia , Miocárdio/metabolismo , Receptor Notch1/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Linhagem da Célula , Células Cultivadas , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Endocárdio/embriologia , Endocárdio/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout/embriologia , Camundongos Knockout/metabolismo , Miocárdio/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Receptor Notch1/genética , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Transfecção
19.
Differentiation ; 84(1): 79-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22516205

RESUMO

The heart is a complex organ that is composed of numerous cell types, which must integrate their programs for proper specification, differentiation and cardiac morphogenesis. During cardiogenesis members of the Twist-family of basic helix-loop-helix (bHLH) transcription factors play distinct roles within cardiac lineages such as the endocardium and extra-cardiac lineages such as the cardiac neural crest (cNCC) and epicardium. While the study of these cell populations is often eclipsed by that of cardiomyocytes, the contributions of non-cardiomyocytes to development and disease are increasingly being appreciated as both dynamic and essential. This review summarizes what is known regarding Twist-family bHLH function in extra-cardiac cell populations and the endocardium, with a focus on regulatory mechanisms, downstream targets, and expression profiles. Improving our understanding of the molecular pathways that Twist-family bHLH factors mediate in these lineages will be necessary to ascertain how their dysfunction leads to congenital disease and adult pathologies such as myocardial infarctions and cardiac fibroblast induced fibrosis. Indeed, this knowledge will prove to be critical to clinicians seeking to improve current treatments.


Assuntos
Endocárdio/embriologia , Miocárdio/citologia , Crista Neural/embriologia , Pericárdio/embriologia , Proteína 1 Relacionada a Twist/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Endocárdio/citologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/metabolismo , Humanos , Camundongos , Crista Neural/citologia , Pericárdio/citologia , Transcrição Gênica
20.
J Neurosci ; 32(6): 2110-20, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22323723

RESUMO

Neural crest cell specification and differentiation to a sympathetic neuronal fate serves as an important model for neurogenesis and depends upon the function of both bHLH transcription factors, notably Hand2, and homeodomain transcription factors, including Phox2b. Here, we define a 1007 bp cis-regulatory element 5' of the Hand1 gene sufficient to drive reporter expression within the sympathetic chain of transgenic mice. Comparative genomic analyses uncovered evolutionarily conserved consensus-binding sites within this element, which chromatin immunoprecipitation and electrophoretic mobility shift assays confirm are bound by Hand2 and Phox2b. Mutational analyses revealed that the conserved Phox2 and E-box binding sites are necessary for proper cis-regulatory element activity, and expression analyses on both Hand2 conditionally null and hypomorphic backgrounds demonstrate that Hand2 is required for reporter activation in a gene dosage-dependent manner. We demonstrate that Hand2 and Hand1 differentially bind the E-boxes in this cis-regulatory element, establishing molecular differences between these two factors. Finally, we demonstrate that Hand1 is dispensable for normal tyrosine hydroxylase (TH) and dopamine ß-hydroxylase (DBH) expression in sympathetic neurons, even when Hand2 gene dosage is concurrently reduced by half. Together, these data define a tissue-specific Hand1 cis-regulatory element controlled by two factors essential for the development of the sympathetic nervous system and provide in vivo regulatory evidence to support previous findings that Hand2, rather than Hand1, is predominantly responsible for regulating TH, DBH, and Hand1 expression in developing sympathetic neurons.


Assuntos
Fibras Adrenérgicas/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Dosagem de Genes/genética , Proteínas de Homeodomínio/fisiologia , Neurogênese/genética , Fatores de Transcrição/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sequência Conservada/genética , Feminino , Genes Reporter/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica/genética , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...